Lecture 10
2020/2021
Microwave Devices and Circuits
for Radiocommunications

2020/2021

- 2C/1L, MDCR
- Attendance at minimum 7 sessions (course + laboratory)
- Lectures- associate professor Radu Damian
- Wednesday 15-17, Online, Microsoft Teams
- E-50\% final grade
- problems + (2p atten. lect.) + (3 tests) + (bonus activity)
- $3 p=+0.5 p$
- all materials/equipments authorized

Materials

- RF-OPTO
- http://rf-opto.etti.tuiasi.ro
- David Pozar, "Microwave Engineering", Wiley; 4th edition, 2011
- 1 exam problem \leftarrow Pozar
- Photos
- sent by email/online exam
- used at lectures/laboratory

Profile photo

- Profile photo - online "exam"

Examene online: 2020/2021
Disciplina: MDC (Microwave Devices and Circuits (Engleza))
Pas 3

Nr.	Titlu	Start	Stop	Text
1	Profile photos	$03 / 03 / 2021 ; 10: 00$	$08 / 04 / 2021 ; 08: 00$	Online "exam" created f .
2	Mini Test 1 (lecture 2)	$03 / 03 / 2021 ; 15: 35$	$03 / 03 / 2021 ; 15: 50$	The current test consis ..

Online

- access to online exams requires the password received by email

Online results submission

- many numerical values

Online results submission

Grade = Quality of the work +

 + Quality of the submission
Important

The lossless line

- input impedance of a length \boldsymbol{l} of transmission line with characteristic impedance \boldsymbol{Z}_{0}, loaded with an arbitrary impedance \boldsymbol{Z}_{L}

The lossless line

$$
\begin{aligned}
& V(z)=V_{0}^{+} e^{-j \cdot \beta \cdot z}+V_{0}^{-} e^{j \cdot \beta \cdot z} \\
& I(z)=\frac{V_{0}^{+}}{Z_{0}} e^{-j \cdot \beta \cdot z}-\frac{V_{0}^{-}}{Z_{0}} e^{j \cdot \beta \cdot z} \\
& Z_{L}=\frac{V(0)}{I(0)} \quad Z_{L}=\frac{V_{0}^{+}+V_{0}^{-}}{V_{0}^{+}-V_{0}^{-}} \cdot Z_{0}
\end{aligned}
$$

- voltage reflection coefficient
$\Gamma=\frac{V_{0}^{-}}{V_{0}^{+}}=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}}$
- Z_{o} real

The lossless line

$$
V(z)=V_{0}^{+} \cdot\left(e^{-j ; \beta z}+\Gamma \cdot e^{j \cdot \beta \cdot z}\right) \quad I(z)=\frac{V_{0}^{+}}{Z_{0}} \cdot\left(e^{-j ; \beta z}-\Gamma \cdot e^{j ; \beta z}\right)
$$

- time-average Power flow along the line

$$
\begin{aligned}
& P_{\text {avg }}=\frac{1}{2} \cdot \operatorname{Re}\left\{V(z) \cdot I(z)^{*}\right\}=\frac{1}{2} \cdot \frac{\left|V_{0}^{+}\right|^{2}}{Z_{0}} \cdot \operatorname{Re}\{1-\Gamma^{*} \cdot \underbrace{e^{-2 j \cdot \beta \cdot z}+\Gamma \cdot e^{2 j \cdot \beta \cdot z}}_{\left(z-z^{*}\right)=\operatorname{Im}}-|\Gamma|^{2}\} \\
& P_{\text {avg }}=\frac{1}{2} \cdot \frac{\left|V_{0}^{+}\right|^{2}}{Z_{0}} \cdot\left(1-|\Gamma|^{2}\right)
\end{aligned}
$$

- Total power delivered to the load = Incident power - "Reflected" power
- Return "Loss" [dB] \quad RL $=-20 \cdot \log |\Gamma| \quad[\mathrm{dB}]$

Reflection and power / Model

- The source has the ability to sent to the load a certain maximum power (available power) P_{a}
- For a particular load the power sent to the load is less than the maximum (mismatch) $P_{L}<P_{a}$
- The phenomenon is "as if" (model) some of the power is reflected $P_{r}=P_{a}-P_{L}$
- The power is a scalar!

Matching, from the point of view of power transmission

$Z_{L}=Z_{i}^{*}$

If we choose a real Zo

- complex numbers
- in the complex plane

$$
\Gamma=\frac{Z-Z_{0}}{Z+Z_{0}}
$$

$$
\Gamma_{L}=\Gamma_{i}^{*}
$$

Scattering matrix - S

- a,b
" information about signal power AND signal phase
- $S_{i j}$
- network effect (gain) over signal power including phase information

Impedance matching

The Smith Chart

The Smith Chart

Impedance Matching
Impedance Matching with Stubs

Smith chart, $\mathrm{r}=1$ and $\mathrm{g}=1$

Impedance Matching with Stubs

Analytical solutions

Exam / Project

Case 1, Shunt Stub

- Shunt Stub

Analytical solution, usage

$$
\cos (\varphi+2 \theta)=-\left|\Gamma_{S}\right|
$$

$$
\Gamma_{S}=0.593 \angle 46.85^{\circ}
$$

$$
\theta_{s p}=\beta \cdot l=\tan ^{-1} \frac{\mp 2 \cdot\left|\Gamma_{S}\right|}{\sqrt{1-\left|\Gamma_{S}\right|^{2}}}
$$

$$
\left|\Gamma_{S}\right|=0.593 ; \quad \varphi=46.85^{\circ} \quad \cos (\varphi+2 \theta)=-0.593 \Rightarrow(\varphi+2 \theta)= \pm 126.35^{\circ}
$$

- The sign (+/-) chosen for the series line equation imposes the sign used for the shunt stub equation
- "+" solution \downarrow

$$
\begin{aligned}
& \left(46.85^{\circ}+2 \theta\right)=+126.35^{\circ} \quad \theta=+39.7^{\circ} \quad \operatorname{Im} y_{S}=\frac{-2 \cdot\left|1_{S}\right|}{\sqrt{1-\left|\Gamma_{S}\right|^{2}}}=-1.472 \\
& \theta_{s p}=\tan ^{-1}\left(\operatorname{Im} y_{S}\right)=-55.8^{\circ}\left(+180^{\circ}\right) \rightarrow \theta_{s p}=124.2^{\circ}
\end{aligned}
$$

- "_" solution \downarrow

$$
\begin{aligned}
& \left(46.85^{\circ}+2 \theta\right)=-126.35^{\circ} \quad \theta=-86.6^{\circ}\left(+180^{\circ}\right) \rightarrow \theta=93.4^{\circ} \\
& \operatorname{Im} y_{S} \xrightarrow{\frac{Z}{=}+2 \cdot\left|\Gamma_{S}\right|} \\
& \sqrt{1-\left|\Gamma_{S}\right|^{2}}
\end{aligned}=+1.472 \quad \theta_{s p}=\tan ^{-1}\left(\operatorname{Im} y_{S}\right)=55.8^{\circ} .
$$

Case 2, Series Stub

- Series Stub
- difficult to realize in single conductor line technologies (microstrip)

Analytical solution, usage

$\cos (\varphi+2 \theta)=\left|\Gamma_{S}\right|$

$$
\theta_{s s}=\beta \cdot l=\cot ^{-1} \frac{\mp 2 \cdot\left|\Gamma_{S}\right|}{\sqrt{1-\left|\Gamma_{S}\right|^{2}}}
$$

$\Gamma_{S}=0.555 \angle-29.92^{\circ}$

$$
\cos (\varphi+2 \theta)=0.555 \Rightarrow(\varphi+2 \theta)= \pm 56.28^{\circ}
$$

$\left|\Gamma_{S}\right|=0.555 ; \quad \varphi=-29.92^{\circ} \quad \cos (\varphi+2 \theta)=0.555 \Rightarrow(\varphi+2 \theta)= \pm 56.28^{\circ}$

- The sign (+/-) chosen for the series line equation imposes the sign used for the series stub equation
- "+" solution \downarrow

$$
\begin{aligned}
& \text { " }+ \text { " solution } \downarrow \\
& \left(-29.92^{\circ}+2 \theta\right)=+56.28^{\circ} \quad \theta=43.1^{\circ} \quad \operatorname{Im} z_{S}=\frac{\Delta+2 \cdot\left|\Gamma_{S}\right|}{\sqrt{1-\left|\Gamma_{S}\right|^{2}}}=+1.335 \\
& \theta_{s s}=-\cot ^{-1}\left(\operatorname{Im} z_{S}\right)=-36.8^{\circ}\left(+180^{\circ}\right) \rightarrow \theta_{s s}=143.2^{\circ} \quad
\end{aligned}
$$

- "_" solution

$$
\left(-29.92^{\circ}+2 \theta\right)=-56.28^{\circ} \quad \theta=-13.2^{\circ}\left(+180^{\circ}\right) \rightarrow \theta=166.8^{\circ}
$$

$$
\operatorname{Im} z_{S}=\frac{-2 \cdot\left|\Gamma_{S}\right|}{\sqrt{1-\left|\Gamma_{S}\right|^{2}}}=-1.335 \quad \theta_{s s}=-\cot ^{-1}\left(\operatorname{Im} z_{S}\right)=36.8^{\circ}
$$

Microwave Amplifiers

Amplifier Power / Matching

- Two ports in which matching influences the power transfer

Amplifier as two-port

Input matching circuit

- If we can afford a 1.2dB decrease of the input gain for better NF, Q ($\mathrm{Gs}=1 \mathrm{~dB}$), position m 1 above is better
- We obtain better (smaller) NF

Output matching circuit

- output constant gain circles CCCOUT: -0.4dB, -0.2 dB, odB,+0.2 dB
- the lack of noise restrictions allows optimization for better gain (close to maximum - position m4)

The Smith Chart

The Smith Chart

Microwave Amplifiers
Broadband amplifiers

Broadband/Wideband amplifiers

- Achieved by some design techniques (only at the expense of gain, complexity)

1. Compensated matching networks
2. Resistive matching networks
3. Negative feedback
4. Balanced amplifiers
5. Distributed amplifiers
6. Differential amplifiers

Balanced amplifiers

- two identical amplifiers with two hybrid couplers $3 \mathrm{~dB} / 90^{\circ}$ to cancel input and output reflections

$$
S_{21}=\frac{-j}{2} \cdot\left(G_{A}+G_{B}\right)
$$

$$
\left.S_{21}\right|_{A=B}=-j \cdot G
$$

$$
S_{11}=\frac{1}{2} \cdot\left(\Gamma_{A}-\Gamma_{B}\right)
$$

$$
F=\frac{1}{2} \cdot\left(F_{A}+F_{B}\right)
$$

$$
\left.S_{11}\right|_{A=B}=0
$$

Balanced amplifiers

Distributed amplifiers

Distributed amplifiers

- the phase delays on the gate (input) and drain (output) lines are synchronized

$$
\gamma_{g}=\alpha_{g}+j \cdot \beta_{g} \quad \gamma_{d}=\alpha_{d}+j \cdot \beta_{d} \quad \beta_{g} \cdot l_{g}=\beta_{d} \cdot l_{d}
$$

- Power gain

$$
G=\frac{g_{m}^{2} \cdot Z_{d} \cdot Z_{g}}{4} \cdot \frac{\left(e^{-N \cdot \alpha_{g} \cdot l_{g}}-e^{-N \cdot \alpha_{d} \cdot l_{d}}\right)^{2}}{\left(e^{-\alpha_{g} \cdot l_{g}}-e^{-\alpha_{d} \cdot l_{d}}\right)^{2}}
$$

- Lossless power gain

$$
G=\frac{g_{m}^{2} \cdot Z_{d} \cdot Z_{g} \cdot N^{2}}{4}
$$

Distributed amplifiers

$$
N_{o p t}=\frac{\ln \left(\alpha_{g} \cdot l_{g}\right)-\ln \left(\alpha_{d} \cdot l_{d}\right)}{\alpha_{g} \cdot l_{g}-\alpha_{d} \cdot l_{d}}
$$

Differential amplifiers

- In differential mode the input capacitances of the two transistors are connected in series
- Unity gain frequency is doubled

Differential amplifiers

- We use circuits to transition from an unbalanced signal to a balanced signal (or vice versa)
- hybrid couplers 3dB / 180 ${ }^{\circ}$
- "balun" (balanced - unbalanced)

Compensated matching networks

Control the design of the matching networks at more (at least 2) frequencies and impose the same gain

Microwave Amplifiers
Multistage Amplifier Design

Multistage amplifiers

- Interstage matching can be designed in two modes:
- Each stage is matched to a virtual $\Gamma=0$

Multistage amplifiers

- Interstage matching can be designed in two modes:
- One stage is matched to offer necessary Γ for the second stage

Example multistage LNA

- Similar to the project assignment

LNA using ATF-34143 providing:

- $G=20 \mathrm{~dB}$
- $F=1 d B$
- @f $=5 \mathrm{GHz}$

Example

- ATF-34143 at Vds=3V Id=20mA.
@5GHz
- S11 $=0.64 \angle 139^{\circ}$
- S12 $=0.119 \angle-21^{\circ}$
- $\mathrm{S} 21=3.165 \angle 16^{\circ}$
- $\mathrm{S} 22=0.22 \angle 146^{\circ}$
- Fmin $=0.54$ (typically[dB] !)

- $\Gamma_{\text {opt }}=0.45 \angle 174^{\circ}$
- $r_{n}=0.03$

Example, LNA @ 5 GHz

ATF-34143 at Vds=3V Id=20mA.
@ 5 GHz

- S11 = $0.64 \angle 139^{\circ}$
- S12 $=0.119 \angle-21^{\circ}$
- S21 $=3.165 \angle 16^{\circ}$
- S22 = $0.22 \angle 146^{\circ}$
- Fmin $=0.54$ (tipic [dB]
- $\Gamma_{\text {opt }}=0.45 \angle 174^{\circ}$
- $r_{n}=0.03$
!ATF-34143
!S-PARAMETERS at $\mathrm{Vds}=3 \mathrm{~V}$ Id=20mA. LAST UPDATED 01-29-99
\# ghz s mar 50
$2.00 .75-1266.306900 .088 \quad 230.26-120$
$2.50 .72-1455.438750 .095150 .25-140$ $3.00 .69-1624.762620 .10270 .23-156$
$\begin{array}{llllllllllll}4.0 & 0.65 & 166 & 3.806 & 38 & 0.111 & -8 & 0.22 & 174\end{array}$
$\begin{array}{llllllll}5.0 & 0.64 & 139 & 3.165 & 16 & 0.119 & -21 & 0.22 \\ 146\end{array}$
$\begin{array}{llllllllll}6.0 & 0.65 & 114 & 2.706 & -5 & 0.125 & -35 & 0.23 & 118\end{array}$
$7.00 .66892 .326-270.129-490.2591$
$8.00 .6967 \quad 2.017-470.133-620.2967$
$\begin{array}{lllllllllllll}9.0 & 0.72 & 48 & 1.758 & -66 & 0.135 & -75 & 0.34 & 46\end{array}$
! FREQ Fopt GAMMAOPT RN/Zo
!GHZ dB MAG ANG
2.00 .190 .71660 .09
2.50 .230 .65830 .07
3.00 .290 .591020 .06
$\begin{array}{llllllllll}4.0 & 0.42 & 0.51 & 138 & 0.03\end{array}$
$5.0 \quad 0.540 .451740 .03$
$\begin{array}{llllll}6.0 & 0.67 & 0.42 & -151 & 0.05\end{array}$
$\begin{array}{lllllllllll}7.0 & 0.79 & 0.42 & -118 & 0.10\end{array}$
$8.00 .920 .45-880.18$
$9.01 .040 .51-630.30$
10-1.16-0.61-43-0.46

Multistage amplifiers

- If we need more power gain than only one transistor can supply
- design target 2odB
- MAG @ $5 \mathrm{GHz}=14.248 \mathrm{~dB}<20 \mathrm{~dB}$
- We use Friis formula to separate the target:
- Power gain
- Noise
- on two amplifier stages

Friis Formula (noise)

$$
F_{c a s}=F_{1}+\frac{F_{2}-1}{G_{1}}+\frac{F_{3}-1}{G_{1} \cdot G_{2}}+\frac{F_{4}-1}{G_{1} \cdot G_{2} \cdot G_{3}}+\cdots
$$

- Effects of Friis Formula:
- it's essential that the first stage is as noiseless as possible even if that means sacrificing power
- the second stage can be optimized for power gain
- Friis Formula must be used in linear scale!
- Avago/Broadcom AppCAD
- AppCAD Free Design Assistant Tool for Microsoft Windows \rightarrow Google

Friis Formula (noise)

$$
G_{c a s}=G_{1} \cdot G_{2} \quad F_{c a s}=F_{1}+\frac{1}{G_{1}}\left(F_{2}-1\right)
$$

- Friis formula
- first stage: low noise factor, probably resulting in a smaller gain
- second stage: high gain, probably resulting in higher noise factor
- It's essential to introduce a design margin (reserve: $\Delta F, \Delta G$)
- $G=G_{\text {design }}+\Delta G$
- $F=F_{\text {design }}-\Delta F$
- Interpretation of the design target
- $G>G_{\text {design, }}$ better, but it's not required to sacrifice other parameters to maximize the gain
- $\mathrm{F}<\mathrm{F}_{\text {design, }}$ better, the smaller the better, we must target the smallest possible noise factor as long as the other design parameters are met

Friis Formula (noise)

- Friis formula
- first stage: low noise factor, probably resulting in a smaller gain
- second stage: high gain, probably resulting in higher noise factor
- Separation of the design parameters on the 2 amplification stages (Estimated!)
- input stage: $\mathrm{F}_{1}=0.7 \mathrm{~dB}, \mathrm{G} 1=9 \mathrm{~dB}$
- output stage: $F 2=1.2 \mathrm{~dB}, \mathrm{G}_{2}=13 \mathrm{~dB}$
- To verify the result apply Friis formula
- First transform to linear scale !

$$
\begin{array}{ll}
F_{1}=10^{\frac{F_{1}[d B]}{10}}=10^{0.07}=1.175 & G_{1}=10^{\frac{G_{1}[d B]}{10}}=10^{0.9}=7.943 \\
F_{2}=10^{\frac{F_{2}}{}[d B]}=10^{0.12}=1.318 & G_{2}=10^{\frac{G_{2}[d B]}{10}}=10^{1.3}=19.953 \\
F_{c a s}=F_{1}+\frac{1}{G_{1}}\left(F_{2}-1\right)=1.215 & G_{c a s}=G_{1} \cdot G_{2}=158.49 \\
F_{c a s}=10 \cdot \log (1.215)=0.846 \mathrm{~dB} & G_{c a s}=10 \cdot \log (158.49)=22 \mathrm{~dB}
\end{array}
$$

Friis Formula (noise)

- Avago/Broadcom AppCAD

(AppCAD - [NoiseCalc]

NoiseCalc	Set Number of Stages	$=\sqrt{2}$	Calculate [F4]	
			Stage 1	Stage 2
	Stage Data	Units	\approx	A36
	Stage Name:		Avago Durbor	$\frac{\text { Avago }}{\text { atr-soxso }}$
	Noise Figure	dB	0.7	1.2
	Gain	dB	9	13
	Output IP3	dBm	Tu0	4.5
	dNF/dTemp	$\mathrm{dB}^{1 / \mathrm{C}}$	0	0
	dG/dTemp	$\mathrm{dB} /{ }^{\circ} \mathrm{C}$	0	0
	Stage Analysis:			
	NF (Temp corr)	dB	0.70	1.20
	Gain (Temp corr)	dB	9.00	13.00
	Input Power	dBm	-50.00	-41.00
	Output Power	dBm	-41.00	-28.00
	d NF / d NF	$d \mathrm{~d} / \mathrm{dB}$	0.97	0.15
	dNF/dGain	$d B / d B$	-0.03	0.00
	dIP3/dIP3	dBm/dBm	0.00	1.00

Enter System Parameters:

Input Power	-50	dBm
Analysis Temperature	25	${ }^{\circ} \mathrm{C}$
Noise BW	1	MHz
Ref Temperature	25	${ }^{\circ} \mathrm{C}$
S/N (for sensitivity)	10	dB
Noise Source (Ref)	290	${ }^{\circ} \mathrm{K}$

Gain =	22.00	
,	0.85	
Noise Temp		
SNR =	63.13	dB
MDS =	-113.13	dBm
Sensitivity =	-103.13	dBm
Noise Floor =	-173.13	m/Hz

Input IP3 $=$	-7.50	dBm
Output IP3 $=$	14.50	dBm
Input IM level $=$	-135.00	dBm
Input IM level $=$	-85.00	dBC
Output IM level $=$	-113.00	dBm
Output IM level $=$	-85.00	dBC
SFDR $=$	70.42	dB

Multistage amplifier design

- Separation of the design parameters on the 2 amplification stages (Estimated!)
- input stage: $\mathrm{F}_{1}=0.7 \mathrm{~dB}, \mathrm{G}_{1}=9 \mathrm{~dB}$
- output stage: F2 $=1.2 \mathrm{~dB}, \mathrm{G}_{2}=13 \mathrm{~dB}$
- total: $F=0.85 \mathrm{~dB}, \mathrm{G}=22 \mathrm{~dB}$
- Meets design specifications (with design margin)
- We can reuse some of the results in the single stage LNA design (Lecture 8)
- input matching can be used for the input of the first stage very low noise, good enough power gain
- output matching was designed for maximum gain, can be used for the output of the second stage
- input and output matching were designed for 50Ω source and load, similar to current conditions

Multistage amplifier design

- Gain computation
- Interstage matching can supplement the gain for both amplifier stages
- The design for input and output matching must be achieved on a single transistor schematic (recommended: easier)

Input matching stage 1 (S 1)

- We favor optimization for noise (low/minimum)
- Also considered
- Power gain (can be lower, but not too much)
- Bandwidth (through Q, quality factor)
- Stability

Input matching stage 1 (S1)

- For the input matching circuit
- noise circle CZ: 0.75 dB
- input constant gain circles CCCIN: $1 \mathrm{~dB}, 1.5 \mathrm{~dB}, 2 \mathrm{~dB}$
- We choose (small Q \rightarrow wide bandwidth) position m1

Input matching stage 1 (S1)

- If we can afford a 1.2 dB decrease of the input gain for better NF, Q ($\mathrm{Gs}=1 \mathrm{~dB}$), position m 1 above is better
- We favor better (smaller) NF

Input matching stage 1 (S1)

- $\mathrm{G}_{\mathrm{S}_{1}}$: Position m_{1} in complex plane, 1 dB

$$
\begin{array}{cl}
\Gamma_{S}=0.412 \angle-178^{\circ} & \left|\Gamma_{S}\right|=0.412 ; \quad \varphi=-178^{\circ} \\
\cos (\varphi+2 \theta)=-\left|\Gamma_{S}\right| & \operatorname{Im}\left[y_{S}(\theta)\right]=\frac{\mp 2 \cdot\left|\Gamma_{S}\right|}{\sqrt{1-\left|\Gamma_{S}\right|^{2}}}
\end{array}
$$

$$
\cos (\varphi+2 \theta)=-0.412 \Rightarrow \quad(\varphi+2 \theta)= \pm 114.33^{\circ}
$$

$$
\theta_{s p}=\tan ^{-1}\left(\operatorname{Im}\left[y_{s}(\theta)\right]\right)=\tan ^{-1}\left(\frac{\mp 2 \cdot\left|\Gamma_{s}\right|}{\sqrt{1-\left|\Gamma_{s}\right|^{2}}}\right)
$$

$(\varphi+2 \theta)=\left\{\begin{array}{l}+114.33^{\circ} \\ -114.33^{\circ}\end{array} \quad \theta=\left\{\begin{array}{l}146.2^{\circ} \\ 31.8^{\circ}\end{array} \quad \operatorname{Im}\left[y_{S}(\theta)\right]=\left\{\begin{array}{l}-0.904 \\ +0.904\end{array} \quad \theta_{s p}=\left\{\begin{array}{l}137.9^{\circ} \\ 42.1^{\circ}\end{array}\right.\right.\right.\right.$

Output matching stage 2 (L2)

- We favor optimization for gain (high/maximum)
- Also considered
- Bandwidth (through Q, quality factor)
- Stability
- noise is not an issue, output matching doesn't influence noise factor

Output matching stage 2 (L2)

- output constant gain circles CCCOUT: -0.4dB, -0.2dB, odB, +0.2dB
- The lack of noise restrictions allows optimization for better gain (close to maximum - position m_{4})

Output matching stage 2 (L2)

- $\mathrm{G}_{\mathrm{L} 2}$: Position m_{4} in complex plane, o.2dB

$$
\begin{array}{cl}
\Gamma_{L}=0.186 \angle-132.9^{\circ} & \left|\Gamma_{L}\right|=0.186 ; \quad \varphi=-132.9^{\circ} \\
\cos (\varphi+2 \theta)=-\left|\Gamma_{L}\right| \quad & \operatorname{Im}\left[y_{L}(\theta)\right]=\frac{-2 \cdot\left|\Gamma_{L}\right|}{\sqrt{1-\left|\Gamma_{L}\right|^{2}}}=-0.379 \\
\cos (\varphi+2 \theta)=-0.186 \Rightarrow & (\varphi+2 \theta)= \pm 100.72^{\circ} \\
\theta_{s p}=\tan ^{-1}\left(\operatorname{Im}\left[y_{L}(\theta)\right]\right)=\tan ^{-1}\left(\frac{\mp 2 \cdot\left|\Gamma_{L}\right|}{\sqrt{1-\left|\Gamma_{L}\right|^{2}}}\right)
\end{array}
$$

$$
(\varphi+2 \theta)=\left\{\begin{array}{l}
+100.72^{\circ} \\
-100.72^{\circ}
\end{array} \quad \theta=\left\{\begin{array}{l}
116.8^{\circ} \\
16.1^{\circ}
\end{array} \quad \operatorname{Im}\left[y_{L}(\theta)\right]=\left\{\begin{array}{l}
-0.379 \\
+0.379
\end{array} \quad \theta_{s p}=\left\{\begin{array}{l}
159.3^{\circ} \\
20.7^{\circ}
\end{array}\right.\right.\right.\right.
$$

Interstage matching (I)

- We take into account gain (high) but also noise
- Also considered
- Bandwidth (through O, quality factor)
- Stability
- We influence the noise factor of the second stage, the noise must be considered but with less restrictive conditions (Friis shows that higher noise is acceptable).

Multistage amplifier

- Power gain

$$
\begin{aligned}
& G_{T}[d B]=G_{s 1}[d B]+G_{0}[d B]+G_{I}[d B]+G_{0}[d B]+G_{L 2}[d B] \\
& G_{0}=\left|S_{21}\right|^{2}=10.017=10.007 d B \\
& G_{T}[d B]=1 d B+10 d B+G_{[}[d B]+10 d B+0.2 d B \\
& G_{T}[d B]=21.2 d B+G_{l}[d B]
\end{aligned}
$$

- Interstage match design must provide at least o.8dB gain to meet specifications, by better match for the output of the first transistor and for the input of the second transistor

Interstage matching 1/2

Interstage matching 1

- A single transmission line keeps constant the magnitude of the reflection coefficient
- a circle around the Smith Chart center

series
line

Interstage matching 1

- Can be designed in two ways:
- starting from the output of the first stage (reflection coefficient S22* *) towards the circles (drawn for the second stage):
- stability
- gain
- noise
- starting from the input of the second stage (reflection coefficient S11*) towards the circles (drawn for the first stage):
- stability
" gain
- First design direction has the advantage to offer control over the noise introduced by the second stage

Interstage matching 1

- Starting point - complex conjugate

Interstage matching 1

- A single transmission line allows reaching a point that cannot be optimized
- $G_{L 1}=0.2 \mathrm{~dB}$
- $G_{S_{2}}=1 \mathrm{~dB}$
- $F_{2}=0.7 \mathrm{~dB}$
- Only one parameter is available for wide band performance tuning

ADS

ADS

Interstage matching 2

Using multiple transmission lines for matching each stage to a intermediate $\Gamma=0$ (virtual) allows detailed control over final reflection coefficient (and thus gain/noise)

Interstage matching 2

- Instead of a single match design we have to design two matching networks
- However both matching networks are anchored to a fixed point ($50 \Omega, \Gamma=0$) so we can use design formulas (Impedance Matching with Stubs)
- Also, due to the presence of multiple networks, we can target precise positions (reflection coefficients) on both stages

Multistage amplifier

- Power gain

$$
\begin{aligned}
& G_{T}[d B]=G_{S 1}[d B]+G_{0}[d B]+G_{L 1}[d B]+G_{S 2}[d B]+G_{0}[d B]+G_{L 2}[d B] \\
& G_{T}[d B]=1 d B+10 d B+G_{L 1}[d B]+G_{S 2}[d B]+10 d B+0.2 d B \\
& G_{T}[d B]=21.2 d B+G_{L 1}[d B]+G_{S 2}[d B]
\end{aligned}
$$

- Interstage match design must provide at least 0.8 dB in total gain to meet specifications, by separately better matching the output of the first transistor and for the input of the second transistor

Interstage matching 2

- Using multiple transmission lines for matching each stage to a intermediate $\Gamma=0$ (virtual) allows detailed control over reflection coefficient on both stages

Interstage matching 2

- One of the stages creates through its matching network a reflection coefficient $\Gamma=0$ towards which the other stage is matched

The two shunt stubs combine into a single one

Interstage matching 2

- The two shunt stubs combine into a single one

Interstage matching 2

series line \rightarrow moves around the center of the SC

- shunt stub \rightarrow on the circle $\mathrm{g}=1$
shunt stub

Interstage matching 2

- For every stage we use a series line and a shunt stub
- the series line moves the reflection coefficient from the desired starting point on the unity conductance circle $\mathrm{g}=1$
- the shunt stub moves the point to the center of the Smith Chart (Zo match)
- The two shunt stubs will then combine into one

Output matching stage 1 (Lı)

- $\mathrm{G}_{\mathrm{L} 1}$ (we use the same point <- output L2), o.2dB

$$
\begin{array}{cl}
\Gamma_{L}=0.186 \angle-132.9^{\circ} & \left|\Gamma_{L}\right|=0.186 ; \quad \varphi=-132.9^{\circ} \\
\cos (\varphi+2 \theta)=-\left|\Gamma_{L}\right| & \operatorname{Im}\left[y_{L}(\theta)\right]=\frac{-2 \cdot\left|\Gamma_{L}\right|}{\sqrt{1-\left|\Gamma_{L}\right|^{2}}}=-0.379 \\
\cos (\varphi+2 \theta)=-0.186 \Rightarrow & (\varphi+2 \theta)= \pm 100.72^{\circ}
\end{array}
$$

- the length of the shunt stub $\theta_{\text {sp }}$ is not calculated because it is not needed
$(\varphi+2 \theta)=\left\{\begin{array}{l}+100.72^{\circ} \\ -100.72^{\circ}\end{array} \theta=\binom{116.8^{\circ}}{16.1^{\circ}} \quad \operatorname{Im}\left[y_{L}(\theta)\right]=\left\{\begin{array}{l}-0.379 \\ +0.379\end{array}\right.\right.$

Output matching stage 1 (Lı)

Equation Solution L1A Solution L1B

$\Phi+2 \theta$	$+100.72^{\circ}$	-100.72°
θ	116.8°	16.1°
$\operatorname{Im}[y(\theta)]$	-0.379	+0.379

Verify stage 1

$G_{S_{1}}$

Go
$G_{L 1}$

freq, GHz
$\mathrm{F}_{1}<0.7 \mathrm{~dB}, \mathrm{G}_{1}>9 \mathrm{~dB}$

Input matching stage 2 (S2)

- $G_{\mathrm{S}_{2}}$ (moving from $\Gamma_{\mathrm{S}_{2}}$ we choose towards complex plane origin - m 3 - gain 2 dB)

Input matching stage 2 (S2)

- $\mathrm{G}_{\mathrm{S}_{2}}$ (going from m3 towards origin), 2 dB

$$
\begin{array}{cl}
\Gamma_{S 2}=0.461 \angle-142.66^{\circ} & \left|\Gamma_{S 2}\right|=0.461 ; \quad \varphi=-142.66^{\circ} \\
\cos (\varphi+2 \theta)=-\left|\Gamma_{S 2}\right| & \operatorname{Im}\left[y_{S 2}(\theta)\right]=\frac{\mp 2 \cdot\left|\Gamma_{S 2}\right|}{\sqrt{1-\left|\Gamma_{S 2}\right|^{2}}} \\
\cos (\varphi+2 \theta)=-0.461 \Rightarrow & (\varphi+2 \theta)= \pm 117.45^{\circ}
\end{array}
$$

- the length of the shunt stub $\theta_{\text {sp }}$ is not calculated because it is not needed
$(\varphi+2 \theta)=\left\{\begin{array}{l}+117.45^{\circ} \\ -117.45^{\circ}\end{array} \theta=\binom{130.1^{\circ}}{12.6^{\circ}} \quad \operatorname{Im}\left[y_{S 2}(\theta)\right]=\left\{\begin{array}{l}-1.039 \\ +1.039\end{array}\right)\right.$

Input matching stage 2 (S2)

Equation \quad Solution S2A Solution S2B

$\Phi+2 \theta$	$+117.45^{\circ}$	-117.45°
θ	130.1°	12.6°
$\operatorname{Im}[y(\theta)]$	-1.039	+1.039

Verify stage 2

Stage $1 / 2$

- According to the conclusions of the Friis formula, the second stage obtains a higher gain because a higher noise is acceptable.

Merging the two shunt stubs

- The two shunt stubs merge into a single one
- There are 4 possible combinations depending on how we chose the electrical length for the two series lines
- for each chosen electric length (θ) the corresponding $\operatorname{Im}[y(\theta)]$ must be used
- Ex:

$$
\begin{array}{rlr}
\theta_{L 1}=116.8^{\circ} \quad \theta_{S 2} & =130.1^{\circ} & \operatorname{Im}\left[y_{s p}\right]=\operatorname{Im}\left[y_{L}\right. \\
\theta_{s p} & =\tan ^{-1}\left(\operatorname{Im}\left[y_{s p}\right]\right) & \theta_{s p}=125.2^{\circ}
\end{array}
$$

Merging the two shunt stubs

- 4 possible combinations
- the admittances are in parallel and add up, not the electrical lengths

$$
\operatorname{Im}\left[y_{s p}\right]=\operatorname{Im}\left[y_{L 1}(\theta)\right]+\operatorname{Im}\left[y_{S 2}(\theta)\right]
$$

$$
\theta_{s p}=\tan ^{-1}\left(\operatorname{Im}\left[y_{s p}\right]\right)
$$

Merging the two shunt stubs

		Solution S2A	Solution S2B
		$\begin{aligned} & \theta=130.1^{\circ} \\ & \operatorname{Im}[y(\theta)]=-1.039 \end{aligned}$	$\begin{aligned} & \theta=12.6^{\circ} \\ & \operatorname{Im}[y(\theta)]=+1.039 \end{aligned}$
Solution L1A	$\begin{aligned} & \theta=116.8^{\circ} \\ & \operatorname{Im}[y(\theta)]=-0.379 \end{aligned}$	$\left\{\begin{array}{l} \theta_{\mathrm{L} 1}=116.8^{\circ} \\ \operatorname{Im}[\mathrm{y}(\theta)]=-1.418 \\ \theta_{\mathrm{p}}=125.2^{\circ} \\ \theta_{\mathrm{S} 2}=130.1^{\circ} \end{array}\right.$	$\begin{aligned} & \theta_{\mathrm{L} 1}=116.8^{\circ} \\ & \operatorname{Im}[\mathrm{y}(\theta)]=+0.66 \\ & \theta_{\mathrm{p}}=33.4^{\circ} \\ & \theta_{\mathrm{S} 2}=12.6^{\circ} \end{aligned}$
Solution L1B	$\begin{aligned} & \theta=16.1^{\circ} \\ & \operatorname{Im}[y(\theta)]=+0.379 \end{aligned}$	$\theta_{\mathrm{L} 1}=16.1^{\circ}$ $\operatorname{Im}[\mathrm{y}(\theta)]=-0.66$ $\theta_{\mathrm{p}}=146.6^{\circ}$ $\theta_{\mathrm{S} 2}=130.1^{\circ}$	$\begin{aligned} & \theta_{\mathrm{L} 1}=16.1^{\circ} \\ & \operatorname{Im}[y(\theta)]=1.418 \\ & \theta_{\mathrm{p}}=54.8^{\circ} \\ & \theta_{\mathrm{S} 2}=12.6^{\circ} \end{aligned}$

Smith Chart

series line \rightarrow moves around the center of the SC

- shunt stub \rightarrow on the circle $\mathrm{g}=1$
shunt stub

Merge 1, Smith Chart

Merge 1, ADS

Merge 2, Smith Chart

Merge 2, ADS

Merge 3, Smith Chart

Merge 3, ADS

Merge 4, Smith Chart

$$
\begin{aligned}
& \theta_{L 1}=16.1^{\circ} \quad \theta_{S 2}=12.6^{\circ} \\
& \operatorname{Im}\left[y_{s p}\right]=\operatorname{Im}\left[y_{L 1}(\theta)\right]+\operatorname{Im}\left[y_{S 2}(\theta)\right]=+1.418
\end{aligned}
$$

linii

serie

Tune Control
Select a parameter to tune by clicking on i
Simulate: Atter each change

Trace History
$100 \div$
$-\longmapsto$

liniininter_smith2.TL2.E	54.800

$\stackrel{-}{\text { lini_inter_smith2.TL3.E } \quad 12.600 \div}$

Update	Details	Reset	Cancel

Merge 4, ADS

Interstage matching 2

- All the combinations obtained meet the target conditions for gain and noise
- Choose a convenient one depending on:
- the physical dimensions of the lines $l=\frac{\theta}{360^{\circ}} \cdot \lambda$
- frequency bandwidth/flatness
- stability
" performance (noise/gain)
- input and output reflection
- etc.

Supplement Mini Project

Implementation in microstrip technology

- microstrip lines
- dielectric layer
" plane metallization (ground plane)
- traces which will control:
- characteristic impedance
- physical/electrical length

Implementation in microstrip technology

- quasi TEM line

$$
\longrightarrow E
$$

Figure 3.25b
© John Wiley \& Sons, Inc. All rights reserved.

Implementation in microstrip technology

quasi TEM line, EmPro

Implementation in microstrip technology

quasi TEM line, EmPro

Implementation in microstrip technology

- quasi TEM line, EmPro

Implementation in microstrip technology

- ~ Aproximativ TEM

a) COUPLED STRIP GEOMETRY

Implementation in microstrip technology

- ~Aproximativ TEM

b) EVEN MODE ELECTRIC FIELD PATTERN (SCHEMATIC)

c) ODD MODE ELECTRIC FIELD PATTERN (SCHEMATIC)

Implementation in microstrip technology

- Equivalent geometry of a quasi-TEM microstrip line with effective dielectric constant homogeneous medium

(a)

(b)

Design

- Empirical formulas

$$
\begin{aligned}
v_{p} & =\frac{c}{\sqrt{\epsilon_{e}}} \\
\beta & =k_{0} \sqrt{\epsilon_{e}}, \\
\epsilon_{e} & =\frac{\epsilon_{r}+1}{2}+\frac{\epsilon_{r}-1}{2} \frac{1}{\sqrt{1+12 d / W}} .
\end{aligned}
$$

$$
Z_{0}= \begin{cases}\frac{60}{\sqrt{\epsilon_{e}}} \ln \left(\frac{8 d}{W}+\frac{W}{4 d}\right) & \text { for } W / d \leq 1 \\ \frac{120 \pi}{\sqrt{\epsilon_{e}}[W / d+1.393+0.667 \ln (W / d+1.444)]} & \text { for } W / d \geq 1\end{cases}
$$

Design

- Empirical formulas

$A=\frac{Z_{0}}{60} \sqrt{\frac{\epsilon_{r}+1}{2}}+\frac{\epsilon_{r}-1}{\epsilon_{r}+1}\left(0.23+\frac{0.11}{\epsilon_{r}}\right)$
$B=\frac{377 \pi}{2 Z_{0} \sqrt{\epsilon_{r}}}$.

$\frac{W}{d}= \begin{cases}\frac{8 e^{A}}{e^{2 A}-2} & \text { for } W / d<2 \\ \frac{2}{\pi}\left[B-1-\ln (2 B-1)+\frac{\epsilon_{r}-1}{2 \epsilon_{r}}\left\{\ln (B-1)+0.39-\frac{0.61}{\epsilon_{r}}\right\}\right] & \text { for } W / d>2,\end{cases}$

Characteristic impedance

- Large impedances require narrow traces
- Small impedances require wide traces
$Z_{0 .}, \Omega$

Microstrip standardization

- Standardization
- dimensions in mil
- 1 mil $=10^{-3}$ inch
- 1 inch $=2.54 \mathrm{~cm}$
- Trace thickness
- based on the weight of the deposited copper
- oz/ft ${ }^{2}$
- $10 z=28.35 \mathrm{~g}$ and $1 \mathrm{ft}=30.48 \mathrm{~cm}$

Greutatea cuprului depus		Grosimea stratului	
oz/ft ${ }^{2}$	$\mathrm{~g} / \mathrm{ft}^{2}$	inch	mm
0.5	14.175	0.0007	0.0178
1.0	28.35	0.0014	0.0356
2.0	56.7	0.0028	0.0712

Microstrip standardization

- Typically the height of the dielectric layers is also standardized in mil

Standard Thickness

RO4003C:

0.008 " (0.203 mm), 0.012 (0.305 mm), $0.016^{\prime \prime}$ (0.406 mm), $0.020^{\prime \prime}$ (0.508 mm)
$0.032^{\prime \prime}(0.813 \mathrm{~mm}), 0.060^{\prime \prime}$ (1.524 mm)
RO4350B:
*0.004" (0.101 mm), 0.0066 " (0.168 mm) 0.010" (0.254 mm), 0.0133 (0.338 mm), 0.0166 (0.422 mm), 0.020 " (0.508 mm) 0.030 " $(0.762 \mathrm{~mm}), 0.060^{\prime \prime}(1.524 \mathrm{~mm})$

ADS linecalc

- In schematics: >Tools>LineCalc>Start
- for Microstrip lines >Tools>LineCalc>Send to Linecalc

[^0]
ADS linecalc

- 1. Define substrate (receive from schematic)

2. Insert frequency

- 3. Insert input data
- Analyze: W,L \rightarrow Zo,E or Ze,Zo,E / at f [GHz]
- Synthesis: Zo, E \rightarrow W,L/at $\mathrm{f}[\mathrm{GHz}]$

ADS linecalc

－Can be used for：
－microstrip lines MLIN：W，L \Leftrightarrow Zo，E
＂microstrip coupled lines MCLIN：W，L，S $\Leftrightarrow \mathrm{Ze}, \mathrm{Zo}, \mathrm{E}$

Inin Lineacturntited

口手困是

$\sum_{z=10}$ LineCalc／untitled
File Simulation Options Help
$\square \square \square$

Component

Type MCLIN \quad ID MCLIN：MCLIN＿DEFAULT $~-~$

Calculated Results
$\mathrm{KE}=6.978$
$\mathrm{KO}=4.870$
$K O=4.870$
AE＿DB $=0.018$
$A O-D B=0.032$
SkinDepth $=0.025$

ADS linecalc

Transmission lines

- http://rf-opto.etti.tuiasi.ro Transmission lines / Rogers
- more precise formulas including
- t , trace thickness
- f, frequency
- formulas for
- microstrip
- strip
- coupled lines

Implementation in microstrip technology

Implementation in microstrip technology

- On all schematics you must have an substrate model/component
- Miscrostrip lines and coupled lines are computed in Linecalc for the same substrate

MLIN
TL25

Implementation in microstrip technology

- We use components from the "Transmission Lines - Microstrip" pallete
- MSUB - substrate
- MLIN - series line
- MLOC - open-circuit shunt stub
- MTEE - modeling of T junction (shunt stub connection to main line)
- MCFIL - coupled line filter section (more accurate model than MCLIN - takes into account that two adjacent sections are physically close)

Implementation in microstrip technology

- Attention is required when inserting parameters for MTEE and MCFIL by checking in the schematic the width of the lines connected to each port.

$$
x
$$

MTEE

Tee 1
Subst="Aluminia" W1=13:66 mil
WV $=13.66 \cdot \mathrm{mil}$.
WB $=13.66 . \mathrm{mil}$.

Implementation in microstrip technology

- Usually there is a shift of the transfer function (red) towards lower frequencies compared to the ideal model (blue)
" due to the MCFIL/MCLIN difference
- Tune the length of filter elements to move the filter bandwidth around $\mathrm{fo}=5 \mathrm{GHz}$

DC Bias

- http://rf-opto.etti.tuiasi.ro
- Agilent Application Notes
- decoupling signal from DC Bias circuitry
- DC Bias circuits for microwave transistors
- Appcad has tools for designing DC Bias circuits

DC Bias

DC Bias, typical choke

CURRENT CONTROLLED

DC Bias, typical schematics/values

DC Bias, elements in E/S

$\mathrm{S}_{11}(\mathrm{AT} 4 \mathrm{GHz})=0.52 \angle 154^{\circ}$
$\mathrm{S}_{11}(\mathrm{AT} 0.1 \mathrm{GHz})=0.901 \angle-14.9^{\circ}$

$\mathrm{S}^{\prime} 11(\mathrm{AT} 4 \mathrm{GHz})=0.52 \angle 154^{\circ}$ UNCHANGED AT 4 GHz
$\mathrm{S}^{\prime}{ }_{11}(\mathrm{AT} 0.1 \mathrm{GHz})=1.066 \angle-8.5^{\circ}\left|\mathrm{S}_{11}\right|>1$
AT 0.1 GHz

DC Bias, bipolar transistors

Example project

- Unify the two schematics
- L8 - amplifier
- L9 - filter

Result (unbalanced)

Result (unbalanced)

Result (~periodic in frequency)

Tune -> balance

- purpose: balance the gain characteristic of the amplifier (maximum at design frequency)
- favor tuning lines at the end of the amplifier
- eliminate/minimize effect of the tune on noise

Tune -> balance, result

Amplifier, Filter, Total

DC Bias elements in ADS schematic

- Insert L (RF chokes) and C (decoupling)
- additional 50Ω connection lines
- source
- load
- between blocks

Gain -> Tune/Optimization

Final result (Gain)

Final result (Noise)

Layout (Example)

Temporary replacement of the transistors and lumped elements (LC) with elements for which ADS has case information

Layout (Example)

Contact

- Microwave and Optoelectronics Laboratory
- http://rf-opto.etti.tuiasi.ro
- rdamian@etti.tuiasi.ro

[^0]: Values are consistent

